Dr. Marques Sophie Office 519 Algebra II

SpringSemester 2014 marques@cims.nyu.edu

Problem Set # 12

Exercise 1:

Let $\mathcal{X} = \{e_1, e_2\}$ be the standard basis in the complex inner product space $V = \mathbb{C}^2$ equipped with the usual Euclidean inner product $(a, b) = a_1 \bar{b_1} + a_2 \bar{b_2}$. Let $\mathcal{N} = \{f_1, f_2\}$ be the basis such that $f_1 = e_1$ and $f_2 = e_1 + e_2$ and define $T : V \to V$ to be the linear operator such that $T(f_1) = f_1$ and $T(f_2) = \frac{1}{2}f_2$. Obviously \mathcal{N} diagonalizes T but the basis eigenvectors f_1, f_2 are not orthogonal.

- 1. Find $[T]_{\mathcal{X},\mathcal{X}}$ and $[e^{tT}]_{\mathcal{X},\mathcal{X}}$ for $t \in \mathbb{R}$.
- 2. Explain why T cannot be a self-adjoint operator $(T^* = T)$.
- 3. Explain why there cannot be an ON basis in V that diagonalizes T.
- 4. Find the solution $X(t), t \in \mathbb{R}$, of the vector-valued differential equation

$$\frac{dX}{dt} = A \cdot X(t) \text{ with } X(0) = \begin{pmatrix} 1\\2 \end{pmatrix}$$

where $A = [T]_{\mathcal{X},\mathcal{X}}$.

Exercise 2:

In $V = \mathbb{R}^3$ equipped with the usual Euclidean inner product let $M = (\mathbb{R}f_3)^{\perp}$ where $f_3 = (1, -2, 3)$.

- 1. Give a formula $(y_1, y_2, y_3) = R(x_1, x_2, x_3)$ in terms of inner products for the linear operator $R : \mathbb{R}^3 \to \mathbb{R}^3$ that reflects vectors across the plane M. Find the image of the particular vector R(1, 1, -3).
- 2. Prove that R is an isometry, so that

$$||R(x) - R(y)|| = ||x - y||$$

and hence is a bijection $R : \mathbb{R}^3 \to \mathbb{R}^3$.

- 3. Find an ON basis $\{e_1, e_2\}$ for M.
- 4. What is the matrix $[R]_{\mathcal{N},\mathcal{N}}$ with respect to the ON basis $\mathcal{N} = \{e_1, e_2, e_3\}$ such that $e_3 = f_3/||f_3||$?
- 5. Is $R: V \to V$ orthogonally diagonalizable? Explain.

Exercise 3:

Let $V = \mathbb{C}^2$ with the usual Euclidean inner product and let $T: V \to V$ be the linear operator whose matrix with respect to the standard ON basis $\mathcal{X} = \{e_1, e_2\}$ is

$$[T]_{\mathcal{X},\mathcal{X}} = \left(\begin{array}{cc} 7 & \sqrt{3} \\ \sqrt{3} & 5 \end{array}\right)$$

- 1. Determine the spectrum $sp_{\mathbb{C}}(T) = \{\lambda_1, \lambda_2\}$ and show T is orthogonally diagonalizable by finding an ON basis $\mathcal{N} = \{f_1, f_2\}$ of eigenvectors.
- 2. Explain why T is self-adjoint.

If an operator is self-adjoint (or merely diagonalizable) it has a spectral decomposition

$$T = \sum_{\lambda \in sp(T)} \lambda P_{\lambda}$$

where $P_{\lambda} = (\text{projection onto } E_{\lambda} \text{ along } \oplus_{\nu \neq \lambda} E_{\nu})$ which describes T as a weighted sum of projections onto the eigenspaces.

- 3. Find the matrices [P_{λk}] that describe the spectral projections with respect ti the diagonalizing basis N.
 Hint: You only need to find one of these matrices because P_{λ1} + P_{λ2} = I ⇒ P_{λ2} = I − P_{λ1}.
- 4. Find the matrices $[P_{\lambda_k}]$ that describes the spectral projections with respect to the standard ON basis \mathcal{X} .

Hint: Again, you only need to find one of these matrices.

5. In terms of the spectral decomposition the square root of T is the operator given by

$$\sqrt{T} = \sum_{\lambda \in sp(T)} \sqrt{\lambda} P_{\lambda}$$

Find the matrix $\left[\sqrt{T}\right]$ that describes \sqrt{T} with respect to the standard ON basis.